Nanostructuring and Phase Transformations in Hard Nitride Coatings
نویسنده
چکیده
This thesis is concerned with self-organization phenomena in hard and wear resistant transition-metal nitride coatings, both during growth and during post-deposition thermal annealing. The uniting physical principle in the studied systems is the immiscibility of their constituent parts, which leads, under certain conditions, to structural variations on the nanoscale. The study of such structures is challenging, and during this work atom probe tomography (apt) was developed as a viable tool for their study. Ti0.33Al0.67N was observed to undergo spinodal decomposition upon annealing to 900 °C, by the use of apt in combination with electron microscopy.The addition of C to TiSiN was found to promote and refine the feather-like microstructure common in the system, with an ensuing decrease in thermal stability. An age-hardening of 36 % was measured in arc evaporated Zr0.44Al0.56N1.20, which was a nanocomposite of cubic, hexagonal, and amorphous phases. Magnetron sputtering of Zr0.64Al0.36N at 900 °C resulted in a self-organized and highly ordered growth of a two-dimensional two-phase labyrinthine structure of cubic ZrN and wurtzite AlN. The structure was analyzed and recovered by apt, although the ZrN phase suffered from severe trajectory aberrations, rendering only the Al signal useable. The initiation of the organized growth was found to occur by local nucleation at 5-8 nm from the substrate, before which random fluctuations in Al/Zr content increased steadily from the substrate. Finally, the decomposition of solid-solution TiB0.33N0.67 was found, by apt, to progress through the nucleation of TiB0.5N0.5 and TiN, followed by the transformation of the former into hexagonal TiB2.
منابع مشابه
A Review on Titanium Nitride and Titanium Carbide Single and Multilayer Coatings Deposited by Plasma Assisted Chemical Vapor Deposition
In this paper, we reviewed researches about the titanium nitride (TiN) and titanium carbide (TiC) single and multilayer coatings. These coatings were deposited by the plasma assisted chemical vapor deposition (PACVD) technique. Plasma-based technologies are used for the processing of thin films and coatings for different applications such as automobile and aerospace parts, computer disc drives,...
متن کاملMulticomponent Alloying for Improved Hard Coatings
Coatings are vital to protect and to increase the productivity of cutting tools in high speed and dry cutting applications. During the cutting operation the temperature may exceed 1000 oC it is therefore necessary that the coatings withstand high temperatures. A lot of development and research has been carried out during the last 30 years on finding new coating material systems providing enhanc...
متن کاملDecorative Titanium Nitride Colored Coatings on Bell-Metal by Reactive Cylindrical Magnetron Sputtering
The transition metal nitrides like titanium nitride exhibit very interesting color variation properties depending on the different plasma deposition conditions using cylindrical magnetron sputtering method. It is found in this deposition study that nitrogen partial pressure in the reactive gas discharge environment plays a significant role on the color variation of the film coatings on bell-met...
متن کاملSystematic theoretical search for alloys with increased thermal stability for advanced hard coatings applications
State-of-the-art alloys for hard coating applications, such as TiAlN, are known to suffer from decreased hardness during heat treatment in excess of 900 C due to the formation of detrimental wurtzite AlN phases. Recent research has shown that multicomponent alloying with additional transition metals (TMs) such as Cr can shift the onset of the phase transformations to higher temperatures, but a ...
متن کاملRecent Progress in the Synthesis and Characterization of Amorphous and Crystalline Carbon Nitride Coatings
This review summarizes our most recent ndings in the structure and properties of amorphous and crystalline carbon nitride coatings, synthesized by reactive magnetron sputtering. By careful control of the plasma conditions via proper choice of process parameters such as substrate bias, target power and gas pressure, one can precisely control lm structure and properties. With this approach, we we...
متن کامل